
Haidour Nabil
PhD student
nabil.haidour@espci.fr
Research topic
3D ultrafast ultrasound imaging
Supervisor
Latest publications
4989618
94NJIV78
haidour
1
national-institute-of-health-research
5
date
desc
7182
https://www.physicsformedicine.espci.fr/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22WJMX8TJS%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haidour%20et%20al.%22%2C%22parsedDate%22%3A%222025-10-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EHaidour%20N%2C%20Favre%20H%2C%20Mateo%20P%2C%20Reydet%20J%2C%20Biz%26%23xE9%3B%20A%2C%20Sambin%20L%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Multi-lens%20ultrasound%20arrays%20enable%20large%20scale%20three-dimensional%20micro-vascularization%20characterization%20over%20whole%20organs.%20%3Ci%3ENat%20Commun%3C%5C%2Fi%3E%202025%3B%3Cb%3E16%3C%5C%2Fb%3E%3A9317.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-025-64911-z%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-025-64911-z%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Multi-lens%20ultrasound%20arrays%20enable%20large%20scale%20three-dimensional%20micro-vascularization%20characterization%20over%20whole%20organs%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nabil%22%2C%22lastName%22%3A%22Haidour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hugues%22%2C%22lastName%22%3A%22Favre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philippe%22%2C%22lastName%22%3A%22Mateo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juliette%22%2C%22lastName%22%3A%22Reydet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alain%22%2C%22lastName%22%3A%22Biz%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucien%22%2C%22lastName%22%3A%22Sambin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jianping%22%2C%22lastName%22%3A%22Dai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul-Matthieu%22%2C%22lastName%22%3A%22Chiaroni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bijan%22%2C%22lastName%22%3A%22Ghaleh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Pernot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Clement%22%2C%22lastName%22%3A%22Papadacci%22%7D%5D%2C%22abstractNote%22%3A%22Mapping%20microcirculation%20at%20the%20whole-organ%20scale%20in%203D%20is%20crucial%20for%20understanding%20vascular%20pathologies%20and%20improving%20diagnostics.%20Although%203D%20ultrasound%20localization%20microscopy%20%28ULM%29%20enables%20microscopic%20resolution%20by%20localizing%20intravenously%20injected%20microbubbles%20in%20small%20animal%20models%2C%20visualizing%20entire%20organs%20in%20large%20animals%20or%20humans%20remains%20challenging%20due%20to%20limited%20field%20of%20view%2C%20low%20sensitivity%2C%20and%20probe%20technological%20complexity.%20Here%2C%20we%20demonstrate%20how%20a%20multi-lens%20array%20method%20overcomes%20these%20limitations.%20Combined%20with%203D%20ULM%2C%20it%20maps%20and%20quantifies%20large%20vascular%20volumes%20%28up%20to%20120%20%5Cu00d7%20100%20%5Cu00d7%2082%5Cu2009mm%5Cu00b3%29%20at%20high%20spatial%20resolution%20%28125%5Cu2013200%5Cu2009%5Cu00b5m%29%20with%20a%20volumetric%20acquisition%20rate%20of%20312%5Cu2009Hz%2C%20using%20low-cost%20technology.%20This%20approach%20enables%20deeper%20insights%20into%20hemodynamics%20from%20large%20vessels%20to%20pre-capillary%20arterioles%2C%20by%20providing%20vast%20and%20rich%20datasets%20of%20whole-organ%20vascularization.%20It%20could%20also%20facilitate%20diagnosis%20of%20microcirculation%20disorders%20and%20monitoring%20of%20small-vessel%20disease%20treatments%20by%20addressing%20key%20limitations%20of%20current%20imaging%20modalities.%22%2C%22date%22%3A%222025-10-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-025-64911-z%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-025-64911-z%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222025-11-04T15%3A34%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22IERTZCX2%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A111638%2C%22username%22%3A%22tdeffieux%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Ftdeffieux%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222025-04-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EZhang%20G%2C%20Vert%20M%2C%20Nouhoum%20M%2C%20Rivera%20E%2C%20Haidour%20N%2C%20Jimenez%20A%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Amplitude-Modulated%20Singular%20Value%20Decomposition%20for%20Ultrafast%20Ultrasound%20Imaging%20of%20Gas%20Vesicles.%20%3Ci%3EIEEE%20Transactions%20on%20Medical%20Imaging%3C%5C%2Fi%3E%202025%3B%3Cb%3EPP%3C%5C%2Fb%3E%3A%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMI.2025.3565023%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMI.2025.3565023%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Amplitude-Modulated%20Singular%20Value%20Decomposition%20for%20Ultrafast%20Ultrasound%20Imaging%20of%20Gas%20Vesicles.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ge%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathis%22%2C%22lastName%22%3A%22Vert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohamed%22%2C%22lastName%22%3A%22Nouhoum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esteban%22%2C%22lastName%22%3A%22Rivera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nabil%22%2C%22lastName%22%3A%22Haidour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatole%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Deffieux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%22%2C%22lastName%22%3A%22Barral%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascal%22%2C%22lastName%22%3A%22Hersen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Pezet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claire%22%2C%22lastName%22%3A%22Rabut%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikhail%20G%22%2C%22lastName%22%3A%22Shapiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22Ultrasound%20imaging%20holds%20significant%20promise%20for%20the%20observation%20of%20molecular%20and%20cellular%20phenomena%20through%20the%20utilization%20of%20acoustic%20contrast%20agents%20and%20acoustic%20reporter%20genes.%20Optimizing%20imaging%20methodologies%20for%20enhanced%20detection%20represents%20an%20imperative%20advancement%20in%20this%20field.%20Most%20advanced%20techniques%20relying%20on%20amplitude%20modulation%20schemes%20such%20as%20cross%20amplitude%20modulation%20%28xAM%29%20and%20ultrafast%20amplitude%20modulation%20%28uAM%29%20combined%20with%20Hadamard%20encoded%20multiplane%20wave%20transmissions%20have%20shown%20efficacy%20in%20capturing%20the%20acoustic%20signals%20of%20gas%20vesicles%20%28GVs%29.%20Nonetheless%2C%20uAM%20sequence%20requires%20odd-%20or%20even-element%20transmissions%20leading%20to%20imprecise%20amplitude%20modulation%20emitting%20scheme%2C%20and%20the%20complex%20multiplane%20wave%20transmission%20scheme%20inherently%20yields%20overlong%20pulse%20durations.%20xAM%20sequence%20is%20limited%20in%20terms%20of%20field%20of%20view%20and%20imaging%20depth.%20To%20overcome%20these%20limitations%2C%20we%20introduce%20an%20innovative%20ultrafast%20imaging%20sequence%20called%20amplitude-modulated%20singular%20value%20decomposition%20%28SVD%29%20processing.%20Our%20method%20demonstrates%20a%20contrast%20imaging%20sensitivity%20comparable%20to%20the%20current%20gold-standard%20xAM%20and%20uAM%2C%20while%20requiring%204.8%20times%20fewer%20pulse%20transmissions.%20With%20a%20similar%20number%20of%20transmit%20pulses%2C%20amplitude-modulated%20SVD%20outperforms%20xAM%20and%20uAM%20in%20terms%20of%20an%20improvement%20in%20signal-to-background%20ratio%20of%20%2B%204.78%20%5Cu00b1%200.35%20dB%20and%20%2B%208.29%20%5Cu00b1%203.52%20dB%2C%20respectively.%20Furthermore%2C%20the%20method%20exhibits%20superior%20robustness%20across%20a%20wide%20range%20of%20acoustic%20pressures%20and%20enables%20high-contrast%20imaging%20in%20ex%20vivo%20and%20in%20vivo%20settings.%20Furthermore%2C%20amplitude-modulated%20SVD%20is%20envisioned%20to%20be%20applicable%20for%20the%20detection%20of%20slow%20moving%20microbubbles%20in%20ultrasound%20localization%20microscopy%20%28ULM%29.%22%2C%22date%22%3A%222025-04-28%22%2C%22language%22%3A%22eng%22%2C%22DOI%22%3A%2210.1109%5C%2FTMI.2025.3565023%22%2C%22ISSN%22%3A%221558-254X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fresearch.ebsco.com%5C%2Flinkprocessor%5C%2Fplink%3Fid%3Df7e0f525-05ef-3327-b61a-de4bf9ed5ce1%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222025-11-20T10%3A32%3A38Z%22%7D%7D%5D%7D
1
Haidour N, Favre H, Mateo P, Reydet J, Bizé A, Sambin L, et al. Multi-lens ultrasound arrays enable large scale three-dimensional micro-vascularization characterization over whole organs. Nat Commun 2025;16:9317. https://doi.org/10.1038/s41467-025-64911-z.
1
Zhang G, Vert M, Nouhoum M, Rivera E, Haidour N, Jimenez A, et al. Amplitude-Modulated Singular Value Decomposition for Ultrafast Ultrasound Imaging of Gas Vesicles. IEEE Transactions on Medical Imaging 2025;PP: https://doi.org/10.1109/TMI.2025.3565023.
Nov 4, 2022 |
|